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Abstract

This paper examines the behaviour of unit-root tests for I(1) time series with drift which is subject to
Markov regime changes. It is shown that the asymptotic null distributions of the popular Dickey–Fuller
statistics are di2erent from the standard asymptotic distributions obtained under a no-break assumption. Monte
Carlo experiments are used to illustrate the 4nite-sample implications of the theoretical results. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent work on the properties of tests for an autoregressive unit root has cast doubts on the
usefulness of many standard tests in situations where the time series of interest is integrated of order
one [I(1)] but there is a break in its trend component. Leybourne et al. (1998) and Leybourne and
Newbold (2000) have demonstrated that the popular Dickey–Fuller tests (Dickey and Fuller, 1979)
have an excessively high Type I error probability when the level or the slope of the trend function
is subject to change. Montañ?es and Reyes (1999), on the other hand, showed that Dickey–Fuller
tests (applied to linearly detrended series) are asymptotically correct when there is a break in the
level of the trend function.

A limitation of these studies is their maintained assumption that structural change is a one-o2
event that occurs at a pre-determined date. Such an assumption is at odds with the behaviour of
many observed time series, especially economic and 4nancial ones, which often appear to have
undergone multiple irregular changes in their structure.
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The aim of the present paper is to extend the work mentioned above by investigating the asymptotic
behaviour of unit-root test statistics in the presence of arbitrarily many stochastic shifts in the trend
component. To do so, we take the view that the rate of drift of the time series of interest is subject
to discrete shifts that are governed by a 4nite Markov chain. Such a stochastic speci4cation for
the trend was introduced by Hamilton (1989) to characterize the behaviour of non-stationary time
series subject to changes in regime, and has attracted a great deal of attention in the econometric
and statistical literature, not least because of its considerable success in the modelling of time series
with structural changes. For our purposes, in addition to providing a plausible stochastic structure for
characterizing situations involving fairly abrupt changes, the Markov trend also has the advantage of
negating the need to 4x the number and location of possible break-points a priori, allowing as it does
for the possibility of arbitrarily many trend breaks at unspeci4ed locations. This is a considerable
generalization of the single-break assumption made in earlier work.

Section 2 of the paper contains our main results pertaining to the asymptotic behaviour of
unit-root test statistics for time series with a Markov trend. Section 3 illustrates the implications
of the theoretical results by means of some Monte Carlo experiments. Section 4 summarizes and
concludes.

2. Main results

Suppose that {Xt; t ∈Z+}; Z+:={0; 1; 2; : : :}, is a real-valued stochastic process such that

Xt = �t + vt; (1)

�t = �t−1 +
m∑
i=1

	iI{St=i}; (2)

vt = vt−1 + �t ; (3)

where {St; t ∈Z+} are random variables taking values in the 4nite set 
={1; 2; : : : ; m}, 	1; 	2; : : : ; 	m
are 4xed constants, {�t ; t ∈Z+} is a white-noise process, the initial values �−1 and v−1 are random
and bounded in probability, and I{A} is the indicator random variable of the event A. The following
assumptions about {St; t ∈Z+} and {�t ; t ∈Z+} will be maintained throughout the paper.

(A.1) {St; t ∈Z+} is a stationary, irreducible, aperiodic, temporally homogeneous, 4rst-order Markov
chain with state space 
={1; 2; : : : ; m}, invariant distribution �=(�1; �2; : : : ; �m), and transition
matrix P = (pij)i; j∈
, where pij:=P(St+1 = i|St = j).

(A.2) {�t ; t ∈Z+} is a sequence of independent, identically distributed (i.i.d.) random variables such
that E(�t) = 0, E(�2t ) = �2 ¿ 0, and E(|�t|2+�)¡∞ for some �¿ 0.

(A.3) {�t ; t ∈Z+} is independent of {St; t ∈Z+}.
The formulation above allows the drift of {Xt; t ∈Z+} to be subject to occasional discrete shifts

that are governed by a simple Markov chain. This is similar to Hamilton’s (1989) Markov model
of trend, although we allow for an arbitrary number of states. Notice that, although {Xt; t ∈Z+} is
non-stationary, we have that MX t:=Xt−Xt−1=�t+

∑m
i=1 	iI{St=i}, so the di2erenced process { MX t; t ∈N}

is stationary.
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Upon observing a 4nite segment (X0; X1; : : : ; Xn) of {Xt; t ∈Z+}, the Dickey–Fuller tests reject the
null hypothesis that {Xt; t ∈Z+} is an I(1) process in favour of the alternative of (trend) stationarity
when the normalized estimation error Bn:=n(�̂n − 1) or the studentized statistic Tn:=(�̂n − 1)=!̂n

take small values. Here, �̂n is the least-squares estimator of � in the autoregressive model

Xt = �0 + �1(t − 1
2n) + �Xt−1 + ut; t = 1; 2; : : : ; n

(where {ut; 16 t6 n} is assumed to be white noise) and !̂n is the least-squares estimator of the
standard deviation of �̂n.

Before stating our main result, let us introduce some notations and de4nitions. As usual, Im denotes
the identity matrix of order m, while 1m:=(1; 1; : : : ; 1) stands for the m-element sum vector. Further,
we let \ := (	1; 	2; : : : ; 	m); � := diag(�1; �2; : : : ; �m), P∞ := limk→∞ Pk = �T1m, and Q :=P − P∞.
It is easy to verify that Pk − P∞ = (Pk−1 − P∞)Q = Qk−1Q = Qk for k ∈N.

The following theorem gives the limit distributions of the Dickey–Fuller statistics for processes
satisfying the relations in Eqs. (1)–(3).

Theorem 1. Suppose that {Xt; 06 t6 n} is a realization of a stochastic process satisfying
Eqs. (1)–(3) and that assumptions (A:1)–(A:3) hold true. Then

Bn
D−→

n→∞

{∫ 1

0
V2(r) dr

}−1{∫ 1

0
V(r) dW(r) +  1

}
(4)

and

Tn
D−→

n→∞

{
 2

∫ 1

0
V2(r) dr

}−1=2 {∫ 1

0
V(r) dW(r) +  1

}
; (5)

where

 1 :=
\Q(Im −Q)−1�\T

�2 + \[(Im − P∞) + 2Q(Im −Q)−1]�\T ;

 2 :=
�2 + \(Im − P∞)�\T

�2 + \[(Im − P∞) + 2Q(Im −Q)−1]�\T ;

V(r) :=W(r) −
∫ 1

0
W(!) d!− 12(r − 1

2)
∫ 1

0
(!− 1

2)W(!) d!; r ∈ [0; 1]

and {W(r); r ∈ [0; 1]} is a standard Wiener process.

Proof. Under assumption (A.1); {St; t ∈Z+} is an ergodic chain with one-dimensional marginal
distribution � (which satis4es �= �PT and 1m�T = 1). Hence; putting

Yt :=
m∑
i=1

	iI{St=i};
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direct calculations show that

E(Yt) =
m∑
i=1

	iP(St = i) = \�T;

Var(Yt) =
m∑
i=1

	2
i P(St = i) − (\�T)2 = \�\T − \P∞�\T = \(Im − P∞)�\T;

Cov(Yt+k ; Yt) =
m∑
i=1

m∑
j=1

	i	jP(St+k = i|St = j)P(St = j) − (\�T)2

= \Pk�\T − \P∞�\T = \Qk�\T; k ∈N:

Now let #t:=Yt + �t − \�T; so that

MX t = \�T + #t: (6)

Then; recalling that {�t ; t ∈Z+} is a collection of i.i.d. random variables independent of {St; t ∈Z+};
it is easy to see that {#t; t ∈Z+} is a stationary sequence with E(#t) = 0;

E(#2
t ) = �2 + \(Im − P∞)�\T (7)

and

E(#t+k#t) = \Qk�\T; k ∈N: (8)

Furthermore; we have

lim
n→∞Var

(
1√
n

n∑
t=1

#t

)
= E(#2

1) + 2
∞∑
k=1

E(#1+k#1)

= �2 + \(Im − P∞)�\T + 2
∞∑
k=1

\Qk�\T

= �2 + \[(Im − P∞) + 2Q(Im −Q)−1]�\T: (9)

To obtain the last equality in Eq. (9); we have used the fact that the eigenvalues $1; : : : ; $m of P satisfy
$1 = 1 and |$i|¡ 1 for i∈{2; : : : ; m} on account of the ergodicity of {St; t ∈Z+}. Consequently;
since Q= limk→∞ (P−Pk); the eigenvalues of Q are zero and limk→∞ ($i − $ki ) for i∈{2; : : : ; m};
and hence limk→∞

∑k
j=0 Qj = (Im −Q)−1 exists.

Finally, since {St; t ∈Z+} is a ’-mixing sequence with geometrically declining mixing coeOcients
(cf. Billingsley, 1968, pp. 167–168) and {�t ; t ∈Z+} is (trivially) ’-mixing of arbitrarily large size,
{#t; t ∈Z+} is &-mixing of arbitrarily large size. This implies that {#t; t ∈Z+} satis4es the mixing
condition in Phillips and Perron (1988, p. 336). Thus, by Eqs. (6)–(9) and Theorem 1 of Phillips
and Perron (1988) the desired results follow.

Remark 1. It is clear from Theorem 1 that; in the presence of a Markov trend the limit distributions
of Bn and Tn are di2erent from the standard Dickey–Fuller asymptotic distributions (which are
obtained from Eqs. (4)–(5) with  1 = 1 −  2 = 0). The latter are shifted either to the left or to the
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right relative to the limit distributions in Theorem 1; depending on whether Q(Im−Q)−1� is positive
de4nite or negative de4nite; respectively. This implies that the empirical Type I error probability
of tests based on Bn and Tn is likely to di2er signi4cantly from the nominal level determined on
the basis of Dickey–Fuller large-sample theory; yielding misleading conclusions about the order of
integration of {Xt; t ∈Z+}.

Remark 2. The asymptotic behaviour of the unit-root statistics Bn and Tn will be una2ected by the
presence of the Markov trend if all the sub-dominant eigenvalues of the transition matrix P are equal
to zero. (When m= 2; for example; this requires that p22 = 1−p11.) In this case; Cov(St+k ; St) = 0
for all k ∈N and \Q(Im − Q)−1�\T = 0. This is a special yet plausible situation; for there exist
time series which appear to be best described as having a trend component which is subject to
uncorrelated random shifts (see; e.g.; Hansen; 1992).

Remark 3. In view of Eq. (6); asymptotically valid unit-root tests can be constructed by relaxing
the Dickey–Fuller assumption that { MX t; t ∈N} is a white-noise process under the null hypothesis. It
is not diOcult; for example; to show that; since { MX t; t ∈N} is a stationary &-mixing sequence under
the conditions of Theorem 1; tests based on statistics like the Z(&̃) and Z(t&̃) statistics of Phillips
and Perron (1988) or their modi4ed versions (MZ& and MZt) proposed by Perron and Ng (1996)
have the correct level asymptotically.

Remark 4. In view of the results on the autocovariance structure of {#t; t ∈Z+} given in Eqs. (7)
and (8); it can be proved; as in Theorem 3 of Zhang and Stine (2001); that { MX t; t ∈N} admits an
ARMA(p; q) representation with p+ 16m and q+ 16m. This implies that a unit-root test based
on the so-called augmented Dickey–Fuller (ADF) pseudo-t statistic (see Dickey and Fuller; 1979;
SaMQd and Dickey; 1984) is likely to have an empirical Type I error probability that is close to the
nominal signi4cance level if n is suOciently large.

3. Simulation results

To illustrate the implications of the results in Section 2 numerically, we carried out a few Monte
Carlo experiments. In the latter, arti4cial time series were generated according to Eqs. (1)–(3) with

m = 2; 	1 = 1; 	2 ∈{3; 6; 9}; (p11; p22)∈{(0:8; 0:9); (0:2; 0:3)}, and �t
D=N(0; 1).

The 4nite-sample densities of the unit-root test statistics Bn and Tn when n = 100 are shown
in Figs. 1 and 2 along with the asymptotic Dickey–Fuller densities. The former were constructed
by kernel smoothing of 10,000 Monte Carlo values of the test statistics, using the Gaussian kernel
and the bandwidth selector of Sheather and Jones (1991). The asymptotic Dickey–Fuller densities
were constructed by similar kernel smoothing of 10,000 Monte Carlo values of Bn and Tn, each
computed on the basis of 5000 arti4cial observations from a Gaussian random walk. Consonant with
the results in Theorem 1, the 4nite-sample densities of the test statistics lie to the left of the limit
Dickey–Fuller densities when p11 +p22 ¡ 1 , while the converse is true when p11 +p22 ¿ 1. (Note
that the eigenvalues of Q(Im − Q)−1� are zero and −2$2($2 − p11)($2 − p22)=($2 − 1)3, where
$2 = p11 + p22 − 1 is the sub-dominant eigenvalue of P; hence,  16 0 if $2 ¡ 0 and  1¿ 0 if
$2 ¿ 0:)
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Fig. 1. Asymptotic Dickey–Fuller density of Bn (left) and Tn (right), and exact densities when n=100; p11=0:8, p22=0:9,
and 	2 ∈{3; 6; 9}.

We also compared the 4nite-sample Type I error probabilities of tests based on Bn and Tn

with those of autocorrelation-robust tests. The latter include tests based on the ADF statistic for
an AR(h + 1) model with trend (see, e.g., Fuller, 1996, pp. 567–568) and the MZ& and MZt

statistics of Perron and Ng (1996). The last two statistics were constructed using an estimate of
limn→∞Var(n−1=2∑n

t=1
MX t) based on an AR(h + 1) model (cf. Perron and Ng, 1996, p. 438). For

all three tests, h was selected by minimizing the familiar Akaike information criterion (AIC) over
the range 06 h6 
12(n=100)1=4�. In addition, we considered tests based on Bn and Tn but with
critical values obtained from a sieve bootstrap approximation to the sampling distributions of the
test statistics. These bootstrap unit-root tests, proposed by Psaradakis (2001), are based on the idea
of approximating the generating mechanism of { MX t} by an AR(h∗) model of suOciently high order,
which is then used to resample residuals and generate bootstrap data. In the experiments, the AIC
was used to select h∗ from the range 16 h∗6 
12(n=100)1=4�.

Table 1 reports the empirical Type I error probability of one-tailed 0.05-level tests when n=100.
For tests based on the statistics Bn; Tn; ADF, MZ&, and MZt , these were calculated from 10,000
Monte Carlo replications using asymptotic critical values from Fuller (1996, pp. 641–642). For
the bootstrap tests, denoted by B∗

n and T ∗
n , 399 bootstrap iterations for each of 1000 Monte Carlo

replications were used to estimate the 4fth percentile of the bootstrap distribution of Bn and Tn under
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Fig. 2. Asymptotic Dickey–Fuller density of Bn (left) and Tn (right), and exact densities when n=100; p11=0:2; p22=0:3,
and 	2 ∈{3; 6; 9}.

Table 1
Empirical Type I error probability of 0.05-level tests

	2 Bn Tn ADF MZ& MZt B∗
n T∗

n

(p11; p22) = (0:8; 0:9)
3 0.000 0.012 0.064 0.100 0.086 0.007 0.035
6 0.000 0.019 0.079 0.119 0.100 0.026 0.052
9 0.000 0.021 0.084 0.125 0.103 0.028 0.042

(p11; p22) = (0:2; 0:3)
3 0.165 0.182 0.102 0.083 0.064 0.022 0.020
6 0.421 0.439 0.079 0.063 0.050 0.018 0.016
9 0.512 0.524 0.074 0.055 0.043 0.013 0.011

the null hypothesis. As expected, the deviations of the empirical rejection frequencies of the standard
Dickey–Fuller tests from the nominal 0.05 value are quite substantial and become more pronounced
the larger 	2−	1 is. Autocorrelation-robust tests certainly hold an advantage over the Dickey–Fuller
tests. (Simple calculations show that the autocovariance structure of { MX t} is that of an ARMA(1; 1)
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process with Var( MX t)=�2+(	2−	1)2�1�2; Cov( MX t+1; MX t)=(	2−	1)[�1	1(�1−p11)−�2	2(�2−p22)],
and Cov( MX t+k ; MX t) = (p11 + p22 − 1)k−1Cov( MX t+1; MX t) for k¿ 2.) More speci4cally, tests based on
the MZ& and MZt statistics clearly dominate other tests when (p11; p22)= (0:2; 0:3), but they are too
liberal when (p11; p22)=(0:8; 0:9). In the latter case, the sieve bootstrap test based on the studentized
statistic Tn is the most successful, having empirical Type I error probabilities that are insigni4cantly
di2erent from 0.05 at the 1% signi4cance level. (It is worth mentioning that qualitatively similar
results were obtained for n = 200:)

4. Summary

In this paper, we have examined the properties of unit-root tests for I(1) time series which have a
Markov trend component. It has been shown that the limit distributions of Dickey–Fuller test statistics
are di2erent from the asymptotic distributions given in Dickey and Fuller (1979) and are dependent
on nuisance parameters that are associated with the magnitude of the structural changes and the
limit properties of the Markov chain that drives these changes. As a consequence, unit-root tests that
use as critical values the percentiles tabulated in Fuller (1996, pp. 641–642) are not asymptotically
correct in general.

The 4nite-sample implications of these theoretical results have been illustrated numerically by
means of a simulation study. Not surprisingly, Dickey–Fuller tests tend to either over-reject or
under-reject the I(1) hypothesis when a Markov trend is present. The problem can be overcome by
the use autocorrelation-robust unit-root tests.
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